Maternal Protein Restriction in the Rat Inhibits Placental Insulin, mTOR, and STAT3 Signaling and Down-Regulates Placental Amino Acid Transporters

نویسندگان

  • Fredrick J. Rosario
  • Nina Jansson
  • Yoshikatsu Kanai
  • Puttur D. Prasad
  • Theresa L. Powell
  • Thomas Jansson
چکیده

The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid transporters. Pregnant rats were fed either an isocaloric low protein (LP, 4% protein) or control diet (18% protein) and studied at gestational day (GD)15, GD19, or GD21 (term 23). At GD19 and GD21, placental expression of phosphorylated eukaryotic initiation factor 4E binding protein 1 (Thr-36/46 or Thr-70) and phosphorylated S6 ribosomal protein (Ser-235/236) was decreased in the LP group. In addition, placental expression of phosphorylated S6 kinase 1 (Thr-389), phosphorylated Akt (Thr-308), and phosphorylated signal transducer and activator of transcription 3 (Tyr-705) was reduced at GD21. In microvillous plasma membranes (MVM) isolated from placentas of LP animals, protein expression of the sodium-coupled neutral amino acid transporter (SNAT)2 and the large neutral amino acid transporters 1 and 2 was reduced at GD19 and GD21. MVM SNAT1 protein expression was reduced at GD21 in LP rats. SNAT4 and 4F2 heavy chain expression in MVM was unaltered. System A and L amino acid transporter activity was decreased in MVM from LP animals at GD19 and GD21. In conclusion, maternal protein restriction inhibits placental insulin, mammalian target of rapamycin signaling, and signal transducer and activator of transcription 3 signaling, which is associated with a down-regulation of placental amino acid transporters. We speculate that maternal endocrine and metabolic control of placental nutrient transport reduces fetal growth in response to protein restriction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Placental mTOR links maternal nutrient availability to fetal growth.

The mTOR (mammalian target of rapamycin) signalling pathway functions as a nutrient sensor, both in individual cells and, more globally, in organs such as the fat body in Drosophila and the hypothalamus in the rat. The activity of placental amino acid transporters is decreased in IUGR (intrauterine growth restriction), and recent experimental evidence suggests that these changes contribute dire...

متن کامل

Diet‐induced obesity in mice reduces placental efficiency and inhibits placental mTOR signaling

As in humans, obesity during pregnancy in mice results in elevated maternal insulin levels and metabolic programming of offspring. mTOR signaling regulates amino acid transport and may function as a placental nutrient sensor. Because obesity is a condition with increased nutrient availability, we hypothesized that diet-induced obesity activates placental mTOR signaling. To test this hypothesis,...

متن کامل

The Role of Mammalian Target of Rapamycin in the Regulation of Amino Acid Transporters in the Human Placenta

Abnormal fetal growth, which is associated with both perinatal morbidity as well as metabolic diseases in adulthood, is an important clinical problem affecting as many as 15% of all pregnancies. However, to this date, there is no specific treatment of this condition. Fetal growth is intimately linked to the nutrient transport functions of the placenta and placental amino acid transporter activi...

متن کامل

Full-Length Adiponectin Attenuates Insulin Signaling and Inhibits Insulin-Stimulated Amino Acid Transport in Human Primary Trophoblast Cells

OBJECTIVE Maternal adiponectin levels are reduced and placental nutrient transporters are upregulated in obesity and gestational diabetes mellitus; however, the effects of adiponectin on placental function are unknown. We hypothesized that adiponectin regulates placental amino acid transport. RESEARCH DESIGN AND METHODS Human primary trophoblast cells were cultured and incubated with globular...

متن کامل

Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity

22 Fetal overgrowth is common in obese women and is associated with perinatal complications and 23 increased risk for the child to develop metabolic syndrome later in life. Placental nutrient 24 transport capacity has been reported to be increased in obese women giving birth to large infants, 25 however the underlying mechanisms are not well established. Obesity in pregnancy is 26 characterized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 152  شماره 

صفحات  -

تاریخ انتشار 2011